After logging in with the login link in the top right, click here to upload your Capstone

Capstone Projects

My Awesome Capstone

Mon, 04/11/2016 - 15:19
Abstract: THIS IS MY CAPSTONE! PLEASE PRESERVE IT FOR POSTERITY.
Access: Yes
Literary Rights: Off
Major: Communication
Year: 2016
File Attachments: Press Capstone 2016.docx
Authors: Meggan Press

Forest Structure and Composition in the Smitty Creek Watershed

Wed, 12/14/2016 - 09:56
Abstract: The 2016 Smitty Creek CFI (Continuous Forest Inventory) study addressed the issue of creating a reliable and repeatable inventory design to examine general forestry trends and their relationships with the watershed itself. Identifying these trends and their consequences is important when considering factors linked to climate change, such as carbon storage and allocation. The objective of this project were as follows: establish 10 new CFI plots, monitor and record for signs of disease and insects, tree mortality, and overstory wildlife habitat, accurately estimate forest carbon sequestration, record understory composition in a 1/50th acre area around each plot center, and suggest methods and reasons for application in Paul Smith’s College CFI capstone projects. The study was conducted within the Smitty Creek watershed in Paul Smiths, NY with the plots falling on a transect that runs north and south. At each plot, trees within the radius were assigned numbered aluminum tags, trees were measured at diameter at breast height, and other features, such as snags, were recorded. Upon completing the project, 10 CFI plots had been created and their locations were recorded, several diseases and forest health concerns were identified, as well as, tree mortality and wildlife habitat considerations, carbon sequestration for the watershed was modeled over the next century, and a CFI project was designed for the Paul Smith’s College land compartments. The Smitty Creek watershed CFI project is repeatable and has an accurate baseline of information for future studies, and the Paul Smith’s College land compartments CFI plot design is ready for implementation.
Access: Yes
Literary Rights: On
Major: Environmental Sciences, Fisheries and Wildlife Science, Forestry
Year: 2016
Authors: Gregg Slezak, Leonard Johnson, William O'Reilly, Jake Weber, Charlie Ulrich, Collin Perkins McCraw, Jake Harm, Nick Georgelas

An Assessment of Heavy Metal Concentrations in Adirondack Waterfowl

Thu, 04/28/2016 - 22:53
Abstract: We analyzed heavy metal concentrations in waterfowl liver and breast tissue from ducks harvested within the Adirondack Park from October 3 to November 13, 2015. Interspecific, intersex, and feeding behavior variation in heavy metal concentrations were assessed. Waterfowl from two feeding behavior groups (diving and dabbling) were harvested from the watershed within a 50 mile radius of Paul Smith’s, New York. Harvested waterfowl species included mallard (Anas platyrhynchos), American black duck (Anas rubripes), common merganser (Mergus merganser), ring-necked duck (Aythya collaris), bufflehead (Bucephala albeola), and hooded merganser (Lophodytes cucullatus). Legal harvest of these species during regulated New York State duck hunting season allows for permissible use of internal organs for heavy metal determination. Dry weight (mg/kg) of digested liver and breast tissue samples were analyzed using atomic absorption spectroscopy. Due to unknown laboratory error, absolute concentration values were inaccurate, thus, rendering accurate analyses unfeasible. However, relative observable trends were able to be assessed given our data’s high precision. Analyte concentrations were significantly greater in liver tissues and there were significant differences between species. Variation in mercury, lead, bismuth, cadmium, chromium, and zinc concentrations in waterfowl serve as an indicator of the presence, cycling, bioaccumulation, and temporal trends of these metals in northeastern aquatic habitats.
Access: Yes
Literary Rights: Off
Major: Environmental Sciences, Fisheries and Wildlife Science
Year: 2016
File Attachments: Final2.docx
Authors: Brandon Snavely, Lewis Lolya