After logging in with the login link in the top right, click here to upload your Capstone

Capstone Projects

What Are the Differences in Trichome Density and Morphology Between Arabidopsis Lyrata Subsp. Lyrata Populations When Grown in A Northern Common Garden, Outside of Their Geographic Distribution?

Tue, 04/30/2019 - 15:23
Abstract: Trichomes are diverse among plants. There is evidence suggesting that environmental factors may influence these structures and their densities. Other evidence shows that weather may influence genetics and gene expression. Arabidopsis lyrata subsp. lyrata is a wild flower that is native to North America and Europe and has been extensively studied. Literature regarding Arabidopsis states that within the family and genus, there is evidence suggesting that trichomes can be either non-branched, twice branched or thrice branched. This study’s purpose was to analyze how trichome density, and morphology in Arabidopsis lyrata subsp. lyrata differs between populations when grown outside of the natural distribution limit. Four populations of Arabidopsis lyrata subsp. lyrata were studied based on latitude. After analyzing the outcomes, unexpectedly there are no major differences between the north and south populations; however, there are differences between the four populations. Based on the data gathered, it was determined that the population, North2 (07G) must be genetically different from the other three populations. The four populations were grown together in a common garden; thus, all variables were the same. The environment did not influence trichome density or morphology within the North2 population, therefore the structures were genetically pre-determined.
Access: Yes
Literary Rights: Off
Major: Biology
Year: 2019
File Attachments: Scarabaggio_A.docx
Authors: Amber My Scarabaggio

The influence of a common parent on sap sweetness among open pollinated sugar maple (Acer saccharum Marsh.) offspring

Wed, 05/08/2019 - 15:08
Abstract: Beginning in the 1950s, the United States Forest Service began to look into the ability to predict and control the heritability of sap sweetness in sugar maples (Acer saccharum Marsh.). A search for genetically superior (sweeter) trees was conducted across 6 states, testing 21,000 trees. Only 53 trees were chosen to be parental stock for the “Super Sweet” sugar maple improvement program. These trees, cloned through rooted cuttings and scion wood grafting, were planted in the Grand Isle, VT clonal bank. One of the five progeny tests of open pollinated offspring from the clonal bank was established in Lake Placid, New York. These trees had their first evaluation at age ten. Each tree had its diameter and height measured, as well as its sap sweetness tested. Now, 35 years after planting, the trees were evaluated again. An inventory was conducted with diameter at breast height, tree height, and live crown ratio measurements. Of the 725 trees planted, only 396 trees remain. Only 258 trees were of size and quality to handle a 5/16” tap. Their sap sweetness was measured at multiple times though out the season. Knowing one of the two parents of each tree allowed for the comparison of the sap sweetness of the different common-parent groups. The data collected did not support that the knowledge of only one parent could be used to predicts a tree’s sweetness relative to any other parent’s offspring. The bigger picture progeny evaluations will continue the “Super Sweet” sugar maple improvement program.
Access: Yes
Literary Rights: Off
Major: Forestry
Year: 2019
Authors: Eric Mance