After logging in with the login link in the top right, click here to upload your Capstone

Capstone Projects

Forest Structure and Composition in the Smitty Creek Watershed

Wed, 12/14/2016 - 09:56
Abstract: The 2016 Smitty Creek CFI (Continuous Forest Inventory) study addressed the issue of creating a reliable and repeatable inventory design to examine general forestry trends and their relationships with the watershed itself. Identifying these trends and their consequences is important when considering factors linked to climate change, such as carbon storage and allocation. The objective of this project were as follows: establish 10 new CFI plots, monitor and record for signs of disease and insects, tree mortality, and overstory wildlife habitat, accurately estimate forest carbon sequestration, record understory composition in a 1/50th acre area around each plot center, and suggest methods and reasons for application in Paul Smith’s College CFI capstone projects. The study was conducted within the Smitty Creek watershed in Paul Smiths, NY with the plots falling on a transect that runs north and south. At each plot, trees within the radius were assigned numbered aluminum tags, trees were measured at diameter at breast height, and other features, such as snags, were recorded. Upon completing the project, 10 CFI plots had been created and their locations were recorded, several diseases and forest health concerns were identified, as well as, tree mortality and wildlife habitat considerations, carbon sequestration for the watershed was modeled over the next century, and a CFI project was designed for the Paul Smith’s College land compartments. The Smitty Creek watershed CFI project is repeatable and has an accurate baseline of information for future studies, and the Paul Smith’s College land compartments CFI plot design is ready for implementation.
Access: Yes
Literary Rights: On
Major: Environmental Sciences, Fisheries and Wildlife Science, Forestry
Year: 2016
Authors: Gregg Slezak, Leonard Johnson, William O'Reilly, Jake Weber, Charlie Ulrich, Collin Perkins McCraw, Jake Harm, Nick Georgelas

Analysis of common water sampling techniques used to assess lake trophic state

Sat, 12/05/2015 - 00:21
Abstract: Volunteer lake management programs (VLMPs) across the country employ different surface water sampling techniques to establish long-term trends in nutrient availability and trophic state. The three most common techniques are a surface grab (SG), 2m integrated tube sampler (IT), and a discrete sampler, such as a Van Dorn or Kemmerer bottle deployed to a depth of 1.5m (DD). These various sampling techniques vary not only in depth, but also in cost and ease of use. The objectives of my study are to 1) determine if there is a statistical difference in chlorophyll-a (chl-a) and total phosphorus (TP) concentration obtained between the three different sampling techniques, 2) determine if the treatment effect (sampling device) varies over time, 3) determine which method has the least amount of variability, and 4) determine if sampling technique ultimately influences trophic state classification. The study was conducted on Upper St. Regis Lake, Paul Smiths, New York. I collected 10 samples from the lake using the three different techniques during the months of June – August, 2015. I found a significant difference in chlorophyll-a concentration between sampling techniques during June and July, and during the month of July for TP. The three sampling techniques yielded similar variability for chlorophyll-a but significantly different variability for TP. Ultimately, the trophic status rating for Upper St. Regis was not effected by sampling technique. My study suggests that VLMP should utilize a SG or IT rather than a costly DD sampler.
Access: Yes
Literary Rights: On
Major: Environmental Sciences
Year: 2015
Authors: Hunter Favreau

Alpine Ecosystems on Ski Area Summits in the Northeast: A Best Management Practices Manual

Mon, 12/01/2014 - 15:19
Abstract: Over the past half a century, anthropogenic climate change has triggered temperatures in the northeastern United States to rise. This increase has led to decreased winter precipitation and a longer annual growing season. Species found in upland/montane habitats on the southern edge of their range limits are particularly threatened by these changes. Warmer temperatures have allowed larger woody plants to advance up mountain slopes, entering the habitat of these fragile species. In the next decade, we will witness a complete disappearance of alpine flora from several locations across the northeast including Whiteface in New York, Sugarloaf in Maine and Mount Mansfield in Vermont. Managers of ski resorts can therefore play an important role in promoting the continued persistence of high-altitude flora and fauna through carefully considered management decisions can also serve to promote the reputation of the ski industry as stewards of mountaintop ecosystems. Doing so will allow for continued study of the species that exist within these communities, the protection of biodiversity, and increased revenue for the resort itself through elevated public image and mountain-top tourism. To help begin these conservation efforts, we have created a best management practice (BMP) manual to guide ski area managers in making these developments. It includes techniques for sustainable slope, soil, vegetation and wildlife management, erosion control, artificial snow production, and ski slope construction and design. Also included are marketing techniques and an overview of the economic viability of the practices outlined in this manual.
Access: Yes
Literary Rights: On
Major: Forestry, Natural Resources Management and Policy
Year: 2014
Authors: Pali Gelsomini, Dylan Randall