After logging in with the login link in the top right, click here to upload your Capstone

Capstone Projects

Removal of Japanese Barberry (Berberis thunbergii) in a Hardwood Forest in Northwest Connecticut

Mon, 12/05/2011 - 09:57
Abstract: Japanese barberry is an invasive shrub that has overtaken and invaded the forest land of New England. Once established, Japanese barberry grows into dense populations that affect forest regeneration, and availability of different nutrients in the soil. This study focused on determining the most time efficient way to remove Japanese barberry from an area. The amount of time it took to complete each removal method was compared with how effective each method was. The effectiveness of each method was based upon how many stems were removed, and how many stems sprouted after a treatment occurred. Four methods were used which included; root severing, cutting stems, burning stems and a herbicide foliar application. It was found that digging stems took a large amount of time, while stem cutting and burning took a moderate amount of time, and the use of herbicide took a small amount of time. It was found that root severing was the least effective method, producing a high amount of new stems and taking the longest time. Herbicide treatment of stems was the most effective method, producing no new stems after treatment and taking a short amount of time to complete. Out of all the methods, two methods had equal expenses. This study has determined the most efficient and least effective way to remove Japanese barberry from a typical New England hardwood stand.
Access: Yes
Literary Rights: Off
Major: Forestry
Year: 2011
File Attachments: Capstone Paper.docx
Authors: Douglas Palmer

Changes in aquatic communities resulting from interactions between climate change and invasive aquatic plants in the Adirondacks.

Thu, 02/09/2012 - 11:26
Abstract: Global climate change can act synergistically with invasive species leading to shifts in ecosystem structure and function. We assessed how a rise in water temperature influenced the potential competitive advantage of an invasive aquatic plant, Eurasian watermilfoil, (Myriophyllum spicatum) over a co-occurring native species northern watermilfoil (M. sibiricum). We also examined the interrelationship between water temperature, watermilfoil, and the aquatic ecosystem including periphyton growth and zooplankton abundance. The study was conducted using replicated mesocosms (3785-liter), with water heaters used to provide a range of temperatures. We found that increasing water temperature promoted the likely competitive advantage of the invasive species, M. spicatum: Survival of M. sibiricum plants was lower than that of M. spicatum across all temperature treatments with a mean survival rate of 24% and 96% respectively. M. sibiricum also showed significantly slower rates of plant growth (mean growth of 3.3 cm compared to 7.6 cm for M. spicatum) and reduced vigor compared to M. spicatum, with an average of less than half the number of growing meristems. Zooplankton densities averaged over 20 times higher in mesocosms with M. sibiricum compared to those with the invasive M. spicatum. Periphyton biomass was best explained by water temperature with an increase in growth in warmer water. Our study confirms that in the face of global climate change, the invasive M. spicatum will continue to exert dominance over its native counterpart. Our results also provide compelling evidence that the combined effects of climate change and invasive aquatic plants can dramatically alter aquatic ecosystems.
Access: Yes
Literary Rights: Off
Major: Environmental Sciences, Fisheries and Wildlife Science, Forestry, Natural Resources Management and Policy
Year: 2010
Authors: Nicholas Boudreau, Zachary Bozic, Geoffrey S. Carpenter, David M. Langdon, Spencer R. LeMay, Shaun M. Martin, Reid M. Mourse, Sarah L. Prince, Kelli M. Quinn, David A. Patrick